Low voltage cathodoluminescence of Zn co-doped RGB phosphors for Field Emission Displays (FEDs) applications

M.Kottaisamy¹* and Y.Nakanishi²

¹Materials Science Research Center, Indian Institute of Technology-Madras, Chennai – 600 036 ² Research Institutes of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan *mmksamy66@yahoo.com

Abstract

Cathodoluminescence of Zn co-doped Y_2O_3 -Eu, Er and Tm were studied as red, green and blue phosphors, respectively, at low voltage excitation (<2KVs) for the possible application in field emission displays (FEDs). The co-doping of Zn and rare earth elements in Y_2O_3 was achieved by citric acid sol-gel method. CL luminance and chromaticity of the red, green and blue emission were improved by co-doping of Zn in Y_2O_3 lattice. It was observed that addition of Zn (5 mol%) in the Y_2O_3 increase the conductivity, crystallinity and shows a strong narrow band emission peaked at 390 nm. This near UV emission is found to increase as a function of current density and excitation voltage. The UV emission peak is quenched by addition of rare earths viz, Eu, Er and Tm and shows an improvement of 30-40 % in cathodo-luminescence intensity at red and blue region, respectively, compared with Zn undoped phosphor.

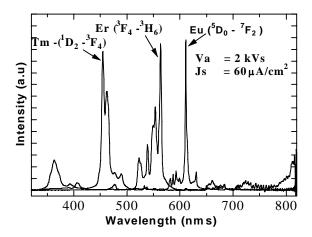


Fig.1. CL emission spectra of Zn co-doped Y₂O₃ with Eu, Er and Tm at the excitation voltage of 2 KVs and 60 μA/cm².