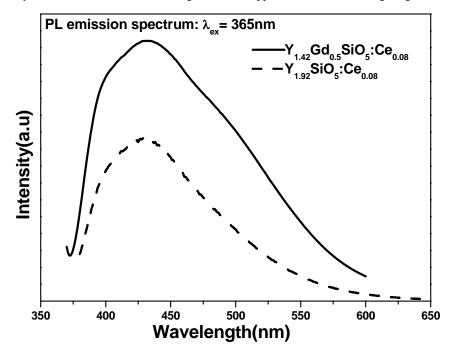
Near UV excitable Y_{2-x-y}Gd_ySiO₅:Ce_x white light emitting phosphors and their blends for white LED and displays


P. Thiyagarajan^{1,2}, M. Kottaisamy¹ and M.S. Ramachandra Rao^{1,2*}

¹Department of Physics, Indian Institute of Technology Madras, Chennai -600036, India. ²Materials Science Research Centre, Indian Institute of Technology Madras, Chennai -600036, India.

*msrrao@iitm.ac.in

Abstract

White light was realized due to Gd co-doping in Y_2SiO_5 :Ce phosphor which is excitable under near UV light synthesized by solid state carbothermal reduction method. Y_2SiO_5 exists between two phase say, X_1 and X_2 in which X_1 form below 1190°C whereas X_2 phase form above this temperature with space group P2₁/c and B2/c respectively [1]. Y_2SiO_5 : Ce emits blue light at 365nm excitation when Ce³⁺ occupies in the 1st site of Y. Gd³⁺ addition enhances emission intensity at 500 nm which broadens the spectrum towards higher wavelength due to occupation of Ce in the 2nd site of Y. Gd³⁺ and Ce³⁺ concentration was optimized to 0.5 and 0.08 in Y_2SiO_5 phosphor respectively. Fig.1 shows the comparison of emission spectra codoped with and without Gd in Y_2SiO_5 :Ce phosphors. This phosphor blended with ZnS:Mn to enrich the CIE chromaticity values to realize better white light which is applicable to solid state lighting and devices.

Figure 1. Comparison of emission spectra of Y_2SiO_5 :Ce with and without Gd co doping **Reference:**

1. J Felsche, Struct.Bonding (Berlin) 13, 99 (1973)