Synthesis and luminescent properties of MAI₂O₄:Tb (M=Ca or Sr) nanocrystals

Dinesh Kumar^a,Sang Do Han^b,V.B.Taxak^a,S.P.Khatkar^{*a}

^aMaharshi Dayanand University, Rohtak-124001, India ^bAdvance Energy Materials and Application Research Department, Korea Institute of Energy Research(KIER), Yuseong Daejeon, Korea ^{*}s khatkar@rediffmail.com

Abstract

Rare earth activated multicomponent oxide phosphors have been widely investigated for application in display devices, lights and detectors. The green – emitting components of these types of lamps are based on Tb^{3+} ions, because it has a sharp emission around 545 nm with high intensity, which is close to the theoretical optimum wavelength for the green component of a tricolor lamp. Terbium activated MAl_2O_4 : Tb nanocrystals where (M=Ca or Sr) were synthesized by combustion route using metal nitrates as precursors and urea as a fuel in a preheated furnace at 500°C. The nanocrystals obtained through combustion synthesis were fired from 700°C to 1100°C for 3h to get better luminescent properties. These nanocrystals have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. Nanocrystals have average size from 20nm to 50nm. The prepared nanocrystals under UV source revealed green luminescence that was attributed to the transitions from 5D_4 excited state to $^7F_J(J=3-6)$ ground state of Tb^{3+} ions. The predominant green colour from magnetic dipole transition $^5D_4 \rightarrow ^7F_5$ of Tb^{3+} ions located at 546nm. In addition the dependence of the luminescence intensity on Tb^{3+} ions concentrations and effect of heat treatment on the particle size of the nanocrystals have also been discussed. Intensities of 5D_4 emissions increase with increase of sintering temperature while that of 5D_3 emissions decreases. The present work reports to achieve the homogenous incorporation of dopants and large scale productions of the nanophosphor in a short interval of time

Keywords: MAl₂O₄:Tb; Nanophosphors; Combustion synthesis; Urea; Green Luminescence